Luk Arbuckle

Posts Tagged ‘economics’

Misleading Americans about public health care

In news on 22 February 2009 at 7:45 pm

Canadians often wait months or even years for necessary care. For some, the status quo has become so dire that they have turned to the courts for recourse. Several cases currently before provincial courts provide studies in what Americans could expect from government-run health insurance.

At least that’s story told by the Fraser Institute in an op-ed in the Wall Street Journal. “As we inch towards nationalized health care,” reads the subtitle, ” important lessons from north of the border.”  With a couple of dire tales, and a couple of national averages, Americans are led to believe that introducing government-run public health insurance will drastically increase wait times in U.S. health care.

Where problems lie
Making an appropriate comparison between wait times in the U.S. and Canada is not trivial. How do you deal with those people that can’t get treatment in the U.S. because of inadequate or nonexistent medical insurance (infinite wait times)? Even comparing specific treatments is tricky because disease coding between the U.S. and Canada differs (ICD-9-CM is currently used in the U.S., and ICD-10-CA in Canada). And then you have to consider subgroups to see how population trends change for socioeconomic classes, say, and to ensure they aren’t reversed entirely (Simpson’s paradox).

Take, for example, a study that found that “socioeconomic status and breast cancer survival were directly associated in the U.S. cohort, but not in the Canadian cohort.”  Also note that “this study replicated the finding of advantaged Canadian cancer survival in smaller metropolitan areas that had been consistently observed in larger metropolitan areas.”  Although it’s possible there are other (confounding) factors influencing these results, it shows that socioeconomic status needs to be considered when comparing medical treatment and outcomes in the U.S. and Canada.  And, therefore, it is likely to affect wait times as well.

Instead of dealing with technical details, however, the article in the WSJ uses stories in which Canadians wait months for treatment.  There’s nothing inherently wrong with this—it is, after all, an op-ed piece and not a journal article—but you have to ask yourself about the choice of stories.  Are they representative of public health care in Canada, or extreme cases?  Also, we don’t know whether the  individual that “paid for surgery that may have saved his life”, rather than wait for treatment in Canada, was in immediate need of treatment.  These are, nonetheless, compelling stories that should not be disregarded—but they don’t prove a trend.

The basic argument put forward is that Canadians wait a long time for treatment under the public health care system.  But what’s considered a “long” wait time, and how does it depend on the condition and severity?  Notice that there’s no mention of wait times in the U.S., even for those that have appropriate health coverage.  Instead we’re given some specific average wait times, but why cataract surgery or hip and knee replacements, and not others?  How much do these wait times vary based on treatment, location, socioeconomic class, and how do they compare with U.S. figures?  We’re left with more questions than answers.

The real confounder
Ultimately, to consider how wait times would increase in the U.S. with the introduction of publicly run, universal health coverage—that is, health coverage for all, as in Canada—there is one factor that would need to be disassociated from wait times in Canada. This factor, not unique to Canada but certainly rare, is not stressed enough in the article.

The Supreme Court of Canada found that Canadians suffer physically and psychologically while waiting for treatment in the public health-care system, and that the government monopoly on essential health services imposes a risk of death and irreparable harm.

Disregarding the inflamed rhetoric, the important point here is that there’s a “government monopoly on essential health services” in Canada.  In other words, there’s no competing private system for health services deemed medically necessary, and the government funds and regulates the public health care system (although the government doesn’t operate it).  You could probably argue that this monopoly is equivalent to price fixing for those services the government decides it’ll pay for.  This is likely the main reason “care is rationed by waiting”—there is, after all, no alternative (besides paying for treatment in the U.S.).

It’s probably only a matter of time before Canada allows for a parallel private system for most, if not all, health services. Private spending currently represents about 30% of the average provinces total health care spending (mostly for medications and services not covered by the public system, such as dentists, optometrists, and physiotherapists).  But until a parallel private system exists for all services in Canada, or the monopoly in essential services is taken into account, it’s disingenuous to suggest that wait times are simply because “individuals bear no direct responsibility for paying for their care.”

Bottom line
Many factors impact health care and wait times.  You can’t look at just one aspect or descriptive statistic and know whether the system works as intended.  It would be like judging a person’s health based on blood pressure alone.  I agree with the author regarding comments he made in the past about improving Canada’s health care system.  But making inferences into a public health care system in the U.S. based on the results from a couple of average wait times in Canada, where other factors confuse these results and make them unreliable to begin with, is inappropriate and misleading at best.

Econometrics lit review in video

In mixed on 27 May 2008 at 12:45 am

The National Bureau of Economic Research—a private, nonprofit, nonpartisan research organization—has made public an eighteen-hour workshop from it’s Summer Institute 2007: What’s New in Econometrics?  Included are lecture videos, notes, and slides from the series.

The lectures cover recent advances in econometrics and statistics.   The topics include (in the order presented):

  • Estimation of Average Treatment Effects Under Unconfoundedness 
  • Linear Panel Data Models
  • Regression Discontinuity Designs
  • Nonlinear Panel Data Models
  • Instrumental Variables with Treatment Effect Heterogeneity: Local Average Treatment Effects
  • Control Function and Related Methods
  • Bayesian Inference
  • Cluster and Stratified Sampling
  • Partial Identification
  • Difference-in-Differences Estimation
  • Discrete Choice Models
  • Missing Data
  • Weak Instruments and Many Instruments
  • Quantile Methods
  • Generalized Method of Moments and Empirical Likelihood

The speakers explain the material well, including some practical pros and cons to the methods presented.  The slides are, however, typically academic: packed with content and equations, with little to support the speaker.  In a way it’s expected, but surprising given that lecture notes are provided.

It takes a bit of time to get into the talks, but once you do there’s lots to learn.  I suggest two open browser windows: one for the videos, one for the slides.  But avoid the temptation to read the slides—the speakers explain the material well and you’ll pick up quite a bit if you can focus on what they’re saying while you stare lovingly at the equations.

Special thanks to John Graves at the Social Science Statistics Blog for posting a notice about the series.